lunes, 2 de mayo de 2011

COSMOLOGÍA: Origen de la evolución

  • El universo está en expansión, en el sentido de que la distancia entre cualquier par de galaxias lejanas se está incrementando con el tiempo.
  • La dinámica de la expansión está perfectamente descrita por la teoría de la relatividad generalizada de Einstein.
  • El universo se expande a partir de un estado inicial de alta densidad y temperatura a veces denominado "Big Bang" o "Gran Explosión".
COSMOLOGÍA

2.a) Teoría del origen del universo

La Cosmología es la parte de la Astronomía que trata de la formación u origen del universo y su evolución.
Entre las características del universo que no cambiarán se encuentran los efectos físicos no imaginarios explicados hoy en día por la ciencia aceptada generalmente u oficial como:
  • El incremento de la energía de la masa con la velocidad, aunque sea como variación de una propiedad elástica de la misma masa.
  • La órbita de Mercurio.
  • El cambio de la velocidad angular de la luz o efecto lentes gravitacionales de las estrellas.
  • La velocidad de la luz es constante, aunque con tantas condiciones que si no se mantienen es variable.
  • Las alteraciones de los relojes atómicos, porque se seguirán alterando por efectos mecánicos en la estructura reticular de la materia o globina, bien sea debido a su tensión longitudinal o a la velocidad de la masa.
  • El origen del universo de una gran explosión o Big Bang, aunque sea de una parte del mismo (Small Bang)
  • Los electrones seguirán dando vueltas al núcleo atómico con la danza típica de los ondones (Dance of the wavons)
  • Los bellacos seguirán siendo bellacos pero algo menos escépticos.

bibliografía

http://astronomia.net/cosmologia/
http://www.molwick.com/es/astrofisica/180-origen-universo.html

Semana 15

Equipo
EXPERIMENTOS CON EL RAYO LASER

1
1y2
2
3,4
3
5,6
4
7,8
5
9,10
6
11,12







1.- Rayo láser

 Se usa un emisor láser de tipo común (llavero). Al apuntar con el emisor a una superficie se puede observar un punto rojo que corresponde a la incidencia del rayo láser sobre esa superficie. Si se espolvorea un polvo entre el emisor y el punto se puede observar el rayo láser debido a la reflexión del mismo en las partículas de polvo.
2.- Rayo láser dentro de una caja

 Se utiliza una caja de vidrio transparente dentro de la cual se coloca un poco de humo. Desde la parte externa de la caja se activa un emisor láser de tipo común (llavero), se puede observar el rayo solamente dentro de la caja fuera de ella no se percibe.
3.- Rayo láser a través del agua

 Se utiliza una caja de vidrio transparente con agua en la cual se ha agregado un poquito de leche. Se emite un rayo láser en la parte externa y se dirige de tal manera que atraviese la caja. Se puede observar que el rayo se ve claramente dentro de la caja pero no se percibe fuera de ella.
4.- Trayectoria de la luz en una superficie transparente

 En una pecera que contiene humo se coloca un vidrio transparente en posición vertical. Al hacer incidir un rayo láser, formando un ángulo con la superficie de trasparente, se puede observar que parte del rayo atraviesa la superficie y otra parte se refleja en la misma, siendo de menor intensidad el rayo reflejado.
5.- Trayectoria de la luz en una superficie semitransparente

 En una pecera que contiene humo se coloca un vidrio semitransparente en posición vertical. Al hacer incidir un rayo láser, formando un ángulo con la superficie semitransparente, se puede observar que parte del rayo atraviesa la superficie y otra parte se refleja en la misma, siendo de mayor intensidad el rayo reflejado.
6.- Trayectoria de la luz en una superficie no transparente opaca

 En una pecera que contiene humo se coloca una superficie no transparente opaca en posición vertical. Al hacer incidir un rayo láser, formando un ángulo con esa superficie, se puede observar que el rayo no se refleja.
7.- Trayectoria de la luz en una superficie no transparente reflectante

 En una pecera que contiene humo se coloca un espejo en posición vertical. Al hacer incidir un rayo láser, formando un ángulo con esa superficie no transparente, se puede observar que el rayo se refleja.
8.- Reflexión especular de la luz

 Se utiliza una pecera que contiene un poco de humo. Al hacer incidir un rayo láser, proveniente de un apuntador, sobre un espejo colocado en su base, se puede observar que el rayo se refleja de forma nítida.

9.- Reflexión difusa de la luz

 Se utiliza una pecera que contiene un poco de humo. Al hacer incidir un rayo láser, proveniente de un apuntador, sobre una superficie corrugada colocada en su base, se puede observar que el rayo se refleja de manera difusa.
10.- Ley de la Reflexión de la Luz

 Se utiliza una pecera que contiene un poco de humo. Al hacer incidir un rayo láser, proveniente de un apuntador, sobre un espejo colocado en su base, se puede observar que el ángulo del rayo incidente es igual al ángulo del rayo reflejado.
11.- Doble reflexión en espejos que forman 90º

 Se dispone de dos pequeños espejos que forman 90º entre sí y se encuentran ubicados dentro de una caja de vidrio transparente con humo. Al hacer incidir un haz de rayo láser en uno de los espejos y ajustarlo de tal manera que se refleje en el otro, se puede observar que el rayo de la segunda reflexión es paralelo al rayo incidente.
12.- Doble reflexión en espejos que forman 120º

 Se dispone de dos pequeños espejos que forman 120º entre sí y se encuentran ubicados dentro de una caja de vidrio transparente con humo. Al hacer incidir un haz de rayo láser en uno de los espejos y ajustarlo de tal manera que se refleje en el otro, se puede observar que el rayo de la segunda reflexión es divergente con respecto al rayo incidente.
Doble reflexión de la luz 45º

 Se dispone de dos pequeños espejos que forman 45º entre sí y se encuentran ubicados dentro de una caja de vidrio transparente con humo. Al hacer incidir un haz de rayo láser en uno de los espejos y ajustarlo de tal manera que se refleje en el otro, se puede observar que el rayo de la segunda reflexión es convergente con el rayo incidente, formándose un triángulo de rayos láser entre los espejos.

Semana 15

EQUIPO
NUEVAS TECNOLOGIAS,
 NUEVOS MATERIALES
LASERES
SUPERCONDUCTORES,
FIBRA OPTICA.
FABRICACION Y UTILIZACION
1
células de combustible
Una nueva forma de producción energética ha estado En Desarrollo desde la carrera del espacio en el 1950'0s. Él’s no absolutamente una batería, pero él isn’t absolutamente un motor de combustión cualquiera. Las células de combustible se parecen ser la onda del futuro para la producción de la electricidad.

Description: http://bits.wikimedia.org/skins-1.17/common/images/magnify-clip.png
Pila de hidrógeno. La celda en sí es la estructura cúbica del centro de la imagen.
¿Qué es una celda de combustible? En principio, una celda de combustible opera como una batería. Genera electricidad combinando hidrógeno y oxígeno electroquímicamente sin ninguna combustión. A diferencia de las baterías, una celda de combustible no se agota ni requiere recarga. Producirá energía en forma de electricidad y calor mientras se le provea de combustible. El único subproducto que se genera es agua 100% pura.
2
Materiales luminiscentes para pantallas
Las pantallas convencionales, utilizan una luz de fondo para producir luz, así como unas capas de componentes ópticos para filtrarla y crear diferentes colores. la luz de fondo puede ser aumentada para mantener el brillo.
para un tubo de rayos catódicos de colores sobre una superficie interior de una placa frontal de la misma, la superficie interior del panel estando provista con una capa conductiva orgánica y volatilizable, y recubierta con una capa foto conductiva orgánica volatilizable, comprendiendo tal capa orgánica fotoconductiva una resina de poliestireno; '2,4-DMPBT' cono un material donador de electrones; y 'TNF' y '2-EAQ' como materiales receptores de electrones.

3
liberación dirigida de fármacos
El consorcio empresarial Nanofarma “ha trabajado en la mejora de las propiedades terapéuticas de los compuestos activos de las compañías a través de la investigación, diseño y desarrollo de sistemas de liberación adecuados para la vía de administración oral y parenteral, y con el denominador común de capacitarles para conducir selectivamente el fármaco al órgano, tejido o célula diana”, señaló el director general de PharmaMar. Para conseguir fármacos más eficaces y seguros en menos tiempo y con menos recursos, el proyecto “Sistemas de Liberación Dirigida de Fármacos” se ha llevado a cabo en 30 centros públicos de investigación, creándose así una potente red de colaboradores dirigida a la creación de sinergias.
En este proyecto se han invertido más de
33 millones de euros durante sus cuatro años de duración, del los que cerca de 15 han corrido a cargo del CDTI a través del programa CENIT.
Según Francisco Quintanilla, director general de Faes Farma, "la participación de las compañías en este tipo de consorcios supone un salto cuantitativo y cualitativo en los proyectos de investigación y permite una mayor alineación con el entorno competitivo e innovador que actualmente se impone como principal apuesta de avance y crecimiento".
En este proyecto se ha trabajado con más de 100 compuestos activos entre antitumorales, antiosteoporóticos, anticoagulantes y distintas moléculas destinadas a enfermedades neuronales, oculares e infecciosas. Con ellas se han utilizado más de 40 sistemas de liberación de fármacos, entre los que se incluyen
liposomas, nanopartículas poliméricas y nanocápsulas, micropartículas, dendrímeros, dispersiones sólidas y promotores de absorción. Además, se encuentran en proceso de evaluación clínica un total de 6 moléculas o formulaciones para el tratamiento de cáncer, trombosis, diabetes por vía oral, Alzheimer y glaucoma.


4
materiales electro-crómicos inteligentes
Los materiales electrocrómicos se usan para controlar la luz y el calor. Aplicaciones recientes en el sector de transporte incluyen el control automático de la luz que refleja un retrovisor.
Los materiales electrocrómicos varían su color cuando se aplica una corriente eléctrica. Existen varias tecnologías con diferentes composiciones de materiales y estructuras.
Se aplica una pequeña corriente eléctrica a través de una capa microscópica sobre la superficie del vidrio, activando así la parte electrocrómica.
Se puede activar la corriente eléctrica en función de un sensor de luz o manualmente, reduciendo así el calor solar que entra en un edificio.
La estructura de capas electrocrómicas se comporta como una pila, en la cual los electrodos y el electrolito se componen de minerales que cambian en función de la carga eléctrica.
Cuando no se aplica un voltaje, el vidrio electrocrómico mantiene su estado inicial. El vidrio consume corriente sólo cuando se cambia de estado.




5
materiales para vehículos reciclables y biodegradables
La combinación de resinas sintéticas y fibras naturales de palma aceitera, permitirá crear materiales resistentes al agua, fuertes y rígidos, que podrán emplearse para la fabricación del fuselaje de los vehículos.

La resina natural será utilizada en el siguiente estadio de investigación para el desarrollo de materiales para coches biodegradables. Foto: malakins

6
dispositivos para diagnosis instantáneas
El Micro Activé chip (que así se llama) es capaz de detectar determinadas enfermedades causadas por virus y bacterias. Crucial en la diagnosis precoz de varios tipos de cáncer.
México.- Investigadores del Instituto Tecnológico de Estudios Superiores de Monterrey (ITESM), Campus Monterrey, diseñaron un dispositivo portátil capaz de diagnosticar las primeras etapas del cáncer cervicouterino en un lapso de dos minutos.
De acuerdo con el ingeniero Jesús Seáñez de Villa, titular de la investigación, este aparato combina una metodología óptica y otra electrónica a partir de una punta ergonómica y desechable de 13 centímetros de largo y 1.2 de diámetro que se inserta en el cérvix y obtiene datos sobre la presencia de tejido canceroso.



Existe un estudio reciente de prospección, realizado a nivel Europeo por la “European Technology Platform (ETP) for Sustainable Chemistry” (SusChem) descrito en la edición final de su “Strategic Research Agenda” (SRA), donde se fijan los tópicos prioritarios de investigación de la Nanoquímica para los que se prevé una mayor actividad en los próximos cuatro años. Dichos tópicos y temáticas de investigación prioritarias se describen a continuación, agrupados por los sectores socio-económicos de aplicación y ordenados de mayor a menor prioridad.
􀂾 Energía: Materiales para el almacenamiento y transporte de hidrógeno, baterías y, polímeros conductores, materiales superconductores y semiconductores, diodos emisores de luz, células solares y materiales aislantes térmicos.
􀂾 Tecnologías de la Información y la Comunicación, OLEDs, electrónica molecular, materiales semiconductores, polímeros conductores, materiales para almacenamiento y transporte de la información y para holografía, baterías, dispositivos 156
electrónicos eco-eficientes, materiales ópticos, interruptores moleculares rápidos y dispositivos portátiles para el almacenamiento de hidrógeno.
􀂾 Salud y Cuidados Personales: Terapias tumorales, , ingeniería tisular, sistemas de liberación inteligentes, , textiles funcionales, materiales para la reconstrucción ósea y dispositivos de tipo “lab-on-a-chip”.
􀂾 Calidad de Vida: Dispositivos para una iluminación más eficiente, sensores de entorno, materiales para potabilizar agua (membranas, sensores), materiales para aislamiento acústico y térmico, , dispositivos textiles funcionales interactivos, materiales inteligentes para empaquetamiento y sensores de calidad para alimentos.
􀂾 Seguridad y Protección Ciudadana: Dispositivos para identificación biométrica, tejidos protectores, fibras superhidrofóbicas, fibras textiles conductoras y ópticas, Dispositivos de aviso, ventanas termo-crómicas y alfombras sensibles a la presión.
􀂾 Transporte: Dispositivos para diagnosis instantánea y para la asistencia al conductor, sensores de tráfico, dispositivos de seguridad mejorada, materiales para la mejora de la sonoridad viaria, mejora de materiales para la rodadura.

Superconductores, Fibra obtica.

SUPERCONDUCTOTES
La estructura que presentan estos superconductores de alta temperatura es de tipo perovskita. El superconductor de Bednorz y Müller, La2-xBaxCuO4 adopta una estructura tetragonal en capas del tipo perovskita K2NiF4.

Figura 12. Par de Cooper.
La teoría de la superconductividad es extremadamente compleja y en esta sección sólo se intentará dar una idea cualitativa de la misma. Se ha sugerido, por muchos investigadores, que el origen de la superconductividad a baja temperatura es la existencia de un par de Cooper, o par de electrones gracias a la interacción indirecta entre ellos por medio de su interacción con los núcleos de los átomos de la red (Fig. 12) Así, si un electrón “está” en una región particular de un sólido, los núcleos de esa región se mueven hacia él resultando una estructura local distorsionada. Como la distorsión local es rica en carga positiva, se favorece que un segundo electrón se una al primero. Por ello, se produce una atracción virtual entre ambos electrones y éstos se mueven como un par. La distorsión local se puede romper fácilmente por el movimiento térmico de los iones, por lo que la atracción virtual se da a temperaturas muy bajas. Como el par de Cooper es estable a la dispersión, puede transportar carga libremente por el sólido, dando lugar así a la superconductividad.



FIBRA ÓPTICA

Un récord español: la mayor velocidad de transmisión de datos por fibra óptica


Los circuitos de Fibra Óptica son filamentos de vidrio flexibles, del espesor de un pelo. Llevan mensajes en forma de haces de luz que realmente pasan a través de ellos de un extremo a otro, donde quiera que el filamento vaya (incluyendo curvas y esquinas) sin interrupción.
Las fibras ópticas pueden ahora usarse como los alambres de cobre convencionales, tanto en pequeños ambientes autónomos (tales como sistemas de procesamiento de datos de aviones), como en grandes redes geográficas (como los sistemas de largas líneas urbanas mantenidos por compañías telefónicas).
El concepto de las comucaciones por ondas luminosas ha sido conocido por muchos años. Sin embargo, no fue hasta mediados de losaños setenta que se publicaron los resultados del trabajo teórico. Estos indicaban que era posible confiar un haz luminoso en una fibra transparente y flexible y proveer asi un canal analogico óptico de la señalización por alambres electrónicamente. El problema técnico que se había de resolver para el avance de la fibra óptica residía en las fibras mismas, que absorbían luz que dificultaba el proceso. Para la comunicación práctica, la fibra óptica debe trasnmitir señales luminosas detectables por muchos kilómetros. El vidrio ordinario tiene un haz luminoso de pocos metros. Se han desarrollado nuevos vidrios muy puros con transparecias mucho mayores que la del vidrio ordinario. Estos vidrios empezarón a producirse a principios de los setenta. Este gran avance dio ímpetu a la industria de las fibras ópticas. Ambos han de ser miniaturizados para componentes de sistemas fibro-ópticos, lo que ha exigido considerable labor de investigación y desarrollo. Los láseres generan luz "coherente" que ni es fuerte ni concentrada. Lo que se debe usar depende de los requisitos Técnicos para diseñar el circuito de fibras ópticas dado.




bibliografía
http://www.textoscientificos.com/quimica/inorganica/enlace-metales/superconductores
http://www.fibra-optica.org/servicios-fibra-optica/que-es-fibra-optica/fibra.asp

Nuevas tecnologias y nuevos materiales: Laceres

El láser es un elemento muy útil para la vida actual, hay láseres que realizan muchas tareas distintas, desde medicina hasta trabajos industriales.
La historia del láser está plagada de problemas y peleas, pero también de acuerdos e innovaciones. Es sin duda una historia muy interesante.
¿QUÉ ES UN LÁSER?
Un láser es un aparato (o dispositivo) que produce un muy especial de luz. Podemos imaginárnoslo como una superlinterna. Sin embargo, la luz procedente de un láser se diferencia de la de una linterna en cuatro aspectos básicos:
  1. La luz láser es intensa. No obstante, sólo ciertos láseres son potentes. Aunque lo parezca, no se trata de una contradicción. La intensidad es una medida de la potencia por unidad de superficie, e incluso los láseres que emiten sólo algunos milivatios son capaces de producir una elevada intensidad en un rayo de un milímetro de diámetro. En realidad, su intensidad puede ser igual a la de la luz del sol. Cualquier lámpara ordinaria emite una cantidad de luz muy superior a la de un pequeño láser, pero esparcida por toda la sala. Algunos láseres pueden producir muchos miles de vatios continuamente; otros son capaces de producir billones de vatios en un impulso cuya duración es tan sólo la mil millonésima parte de un segundo.
  2. Los haces láser son estrechos y no se dispersan como los demás haces de luz. Esta cualidad se denomina direccionalidad. Se sabe que ni la luz de un potente foco logra desplazarse muy lejos: si se enfoca hacia el firmamento, su rayo parece desvanecerse de inmediato. El haz de luz comienza a esparcirse en el memento en que sale del foco, hasta alcanzar tal grado de dispersión que llega a perder su utilidad. Sin embargo, se han logrado reflejar haces láser de pocos vatios de potencia sobre la luna y su luz era todavía lo suficientemente brillante para verla desde la tierra. de los primeros haces láser que se disparó contra la luna en 1962 sólo lleg6 a dispersarse cuatro kilómetros sobre la superficie lunar. ¡No está mal si se considera que se había desplazado cuatrocientos mil kilómetros!
  3. La luz láser es coherente. Esto significa que todas las ondas luminosas procedentes de un láser se acoplan ordenadamente entre sí. Una luz corriente, como la procedente de una bombilla, genera ondas luminosas que comienzan en diferentes mementos y se desplazan en direcciones diversas. Algo parecido a lo que ocurre cuando se arroja un puñado de piedrecitas en un . Lo único que se crean son pequeñas salpicaduras y algunas ondulaciones. Ahora bien, si se arrojan las mismas piedrecitas una a una con una frecuencia exactamente regular y justo en el mismo sitio, puede generarse una ola en el agua de magnitud. Así actúa un láser, y esta propiedad especial puede tener diversas utilidades. Dicho de otro modo, una bombilla o un foco son como escopetas de cartuchos, mientras que un láser equivale a una ametralladora.
  4. Los láseres producen luz de un solo color, o para decirlo técnicamente, su luz es monocromática. La luz común contiene todos los colores de la luz visible (es decir, el espectro), que combinados se convierten en . Los haces de luz láser han sido producidos en todos los colores del iris (si bien el más común es el rojo), y también en muchos tipos de luz invisible; pero un láser determinado sólo puede emitir única y exclusivamente un solo color. Existen láseres sintonizables que pueden ser ajustados para producir diversos colores, pero incluso éstos no pueden emitir más que un color único en un memento dado. Determinados láseres, pueden emitir varias frecuencias monocromáticas al mismo tiempo, pero no un espectro continuo que contenga todos los colores de la luz visible como pueda hacerlo una bombilla. Además, existen numerosos láseres que proyectan luz invisible, como la infrarroja y la ultravioleta.



bibliografía:


Semana 11